Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299790

RESUMO

AIMS: During fermentation, the accumulation of acidic products can induce media acidification, which restrains the growth of Bifidobacterium animalis subsp. lactis Bb12 (Bb12). This study investigated the nutrient consumption patterns of Bb12 under acid stress and effects of specific nutrients on the acid resistance of Bb12. METHODS AND RESULTS: Bb12 was cultured in chemically defined medium (CDM) at different initial pH values. Nutrient consumption patterns were analyzed in CDM at pH 5.3, 5.7, and 6.7. The patterns varied with pH: Asp + Asn had the highest consumption rate at pH 5.3 and 5.7, while Ala was predominant at pH 6.7. Regardless of the pH levels (5.3, 5.7, or 6.7), ascorbic acid, adenine, and Fe2+ were vitamins, nucleobases, and metal ions with the highest consumption rates, respectively. Nutrients whose consumption rates exceeded 50% were added individually in CDM at pH 5.3, 5.7, and 6.7. It was demonstrated that only some of them could promote the growth of Bb12. Mixed nutrients that could promote the growth of Bb12 were added to three different CDM. In CDM at pH 5.3, 5.7, and 6.7, it was found that the viable cell count of Bb12 was the highest after adding mixed nutrients, which were 8.87, 9.02, and 9.10 log CFU ml-1, respectively. CONCLUSIONS: The findings suggest that the initial pH of the culture medium affects the nutrient consumption patterns of Bb12. Specific nutrients can enhance the growth of Bb12 under acidic conditions and increase its acid resistance.


Assuntos
Bifidobacterium animalis , Probióticos , Ácidos , Purinas , Nutrientes , Pirimidinas , Concentração de Íons de Hidrogênio
2.
J Sci Food Agric ; 103(4): 1775-1783, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36305089

RESUMO

BACKGROUND: During high-cell-density culture of Lactobacillus fermentum, the optimal pH is often maintained by adding NaOH. During cultivation at controlled pH, L. fermentum experiences osmotic stress due to the continuous accumulation of sodium lactate as a neutralizer product, affecting its survival in subsequent processing. The purpose of this study was to evaluate the nutrient consumption patterns of L. fermentum ATCC 14931 under sodium lactate stress and to screen nutrients that help it resist osmotic stress. RESULTS: The consumption and consumption rates of amino acids, purines, pyrimidines, vitamins, and metal ions were analyzed in chemically defined media containing 0.13, 0.31, or 0.62 mm L-1 sodium lactate. The highest consumption rates were found for arginine, guanine, folic acid, and Mn2+ , and the most consumed nutrients were glutamate + glutamine, guanine, ascorbic acid, and Na+ . Arginine 2.58 mm L-1 , guanine 0.23 mm L-1 , and Mn2+ 0.25 mm L-1 were added to the medium at sodium lactate concentrations of 0.13 and 0.62 mm L-1 , and arginine 2.58 mm L-1 , guanine 0.26 mm L-1 , and Mn2+ 0.25 mm L-1 at a sodium lactate concentration of 0.31 mm L-1 . The viable cell counts of L. fermentum ATCC 14931 were approximately 1.02-fold (P < 0.05) of the counts observed in control medium at all three concentrations of sodium lactate. CONCLUSION: The present results suggest that certain nutrients accelerate the growth of L. fermentum under sodium lactate stress and enhance its resistance to this adverse condition. © 2022 Society of Chemical Industry.


Assuntos
Limosilactobacillus fermentum , Lactato de Sódio , Aminoácidos , Arginina/metabolismo , Nutrientes
3.
Food Res Int ; 158: 111575, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840260

RESUMO

After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.


Assuntos
Alimentos Fermentados , Isoflavonas , Ácido 3-Hidroxiantranílico , Antioxidantes/farmacologia , Peptídeos , /química
4.
Materials (Basel) ; 15(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35683295

RESUMO

Aluminum alloy tubes are widely used in various industries because of their excellent performance. Up to now, when the tube is bent, the elastoplastic deformation evolution mechanism of the cross-section has not been clear, and no direct analytical proof has been found. In this paper, based on the bilinear material model assumption, a new mechanical model of tube plane bending deformation is constructed. The analytical model can describe in detail the evolution mechanism of elastic-plastic deformation on the cross-section of the tube after bending deformation, the position of the elastic-plastic boundary, the position of the radius of the strain neutral layer, and the relationship between the bending moment over the section and the bending radius. According to this model, the deformation law of the tube cross-section during bending is elucidated. The results are as follows: (1) the deformation evolution of the cross-section of the bending deformed tube calculated by the analytical model is in good agreement with the finite element model (FEM) of pure bending. (2) By comparing the results of the analytical model with FEM results, and the processing test of the self-designed four-axis free bending forming tube bender, the bending moments are in good agreement. (3) Compared with the bending moments calculated by several other analytical models of tube bending, this model has a relatively small deviation value.

5.
Foods ; 11(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626981

RESUMO

During fermentation and food processing, Lacticaseibacillus rhamnosus ATCC 53103 can encounter many adverse conditions, and acid stress is one of them. The purpose of the present study was to investigate the influence of acid stress on the global translational and transcriptional regulation of Lacticaseibacillus rhamnosus ATCC 53103. Two pH values (pH 6.0 vs. pH 5.0) were applied, the effects of which were studied via ribosome profiling and RNA sequencing assay. Under acid stress, many genes showed differential changes at the translational and transcriptional levels. A total of 10 genes showed different expression trends at the two levels. The expression of 337 genes-which mainly participated in the ABC transporters, amino acid metabolism, and ribosome functional group assembly pathways-was shown to be regulated only at the translational level. The translational efficiency of a few genes participating in the pyrimidine and amino acid metabolism pathways were upregulated. Ribosome occupancy data suggested that ribosomes accumulated remarkably in the elongation region of open reading frame regions under acid stress. This study provides new insights into Lacticaseibacillus rhamnosus ATCC 53103 gene expression under acid stress, and demonstrates that the bacterium can respond to acid stress with synergistic translational and transcriptional regulation mechanisms, improving the vitality of cells.

6.
Front Microbiol ; 12: 781454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899662

RESUMO

To determine whether osmotic pressure affects the translation efficiency of Lactobacillus rhamnosus, the ribosome profiling assay was performed to analyze the changes in translation efficiency in L. rhamnosus ATCC 53103. Under osmotic stress, differentially expressed genes (DEGs) involved in fatty acid biosynthesis and metabolism, ribosome, and purine metabolism pathways were co-regulated with consistent expression direction at translation and transcription levels. DEGs involved in the biosynthesis of phenylalanine, tyrosine, and tryptophan, and the phosphotransferase system pathways also were co-regulated at translation and transcription levels, while they showed opposite expression direction at two levels. Moreover, DEGs involved in the two-component system, amino acid metabolism, and pyruvate metabolism pathways were only regulated at the transcription level. And DEGs involved in fructose and mannose metabolism were only regulated at the translation level. The translation efficiency of DEGs involved in the biosynthesis of amino acids was downregulated while in quorum sensing and PTS pathways was upregulated. In addition, the ribosome footprints accumulated in open reading frame regions resulted in impaired translation initiation and elongation under osmotic stress. In summary, L. rhamnosus ATCC 53103 could respond to osmotic stress by translation regulation and control the balance between survival and growth of cells by transcription and translation.

7.
Int J Food Microbiol ; 354: 109317, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34225032

RESUMO

The purpose of the present study was to control the fermentation time and nitrite content of suancai prepared with Lactobacillus plantarum. According to analyses of the consumption amount and rate of nutrients, growth-stimulating nutrients, essential nutrients and nutrients accelerating the fermentation process of suancai, Asp, Thr, Glu, Cys, Tyr, Mg2+, Mn2+ and inosine were selected as additions to suancai prepared with L. plantarum. The fermentation time and nitrite content of suancai supplemented with nutrients and prepared with L. plantarum were shortened by 2 days and 5 days and reduced by approximately 0.1-fold and 0.7-fold, respectively, compared with unsupplemented suancai prepared with L. plantarum at 25 °C and 10 °C. The fermentation time and nitrite content of suancai supplemented with nutrients and prepared with L. plantarum were shortened by 6 days and 15 days and reduced by approximately 0.17-fold and 0.8-fold, respectively, compared with suancai undergoing spontaneous fermentation at 25 °C and 10 °C. Furthermore, no significant differences were observed in sensory properties in suancai. The results of this study indicated that certain nutrients accelerated the growth of L. plantarum and reduced the fermentation time and nitrite content of suancai prepared with L. plantarum. These findings help to establish a foundation for the practical use of nutrients to control the fermentation of suancai.


Assuntos
Alimentos Fermentados , Lactobacillus plantarum , Nutrientes , Fermentação , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Lactobacillus plantarum/metabolismo , Nitritos/análise , Nutrientes/metabolismo
8.
J Colloid Interface Sci ; 514: 338-348, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29277055

RESUMO

Leather product with durable antibacterial property is of great interest both from industry and consumer's point of view. To fabricate such functional leather, gallic acid modified silver nanoparticles (GA@AgNPs) were first in situ synthesized with a core-shell structure and an average size of 15.3nm. Due to its hydrophilic gallic acid surface, the GA@AgNPs possessed excellent stability and dispersibility in wide pH range from 3 to 12 and also showed effective antibacterial activity with a minimum inhibitory concentration (MIC) of around 10µgmL-1. Then, such GA@AgNPs were used as retanning agent to be successfully filled into leather matrix during the leather manufacturing process. Moreover, taking the advantage of its high surface density of carboxyl groups, these GA@AgNPs could be further chemically cross-linked onto collagen fibers by chrome tanning agent. After retanning, the resultant leather was given a "AgNPs sponge" feature with high payload of silver nanoparticles against laundry, exhibiting high and durable antibacterial activity.

9.
J Colloid Interface Sci ; 490: 642-651, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27940031

RESUMO

Development of eco-labeled and effectively antibacterial coatings for final leather products has been desiderated both by industry and by consumers. Herein, PEGylated chitosan modified silver nanoparticles (PEG-g-CS@AgNPs) were prepared and characterized by UV-vis spectroscopy, transmission electron microscopy and dynamic light scattering. The antimicrobial activity of such silver nanoparticles was investigated against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), exhibiting much lower minimum inhibitory concentration (MIC) than chitosan or PEG-g-CS. Water-borne coating was formed by immobilizing the PEG-g-CS@AgNPs onto the leather surface through the electrostatic interaction between amino groups of chitosan and carboxyl groups of leather collagen. Scanning electron microscopy and water contact angle were employed to study the coating's morphology and hydrophilicity, respectively. After coating, leather samples showed significantly high bactericidal efficiency with reusability after release of dead cells from the coating by simply water washing. The excellent antibacterial property of PEG-g-CS@AgNPs coating was ascribed to the combination of bacteria-resistance and bacteria-release by PEGylation, and dual bacteria-killing based on chitosan and Ag+ release.


Assuntos
Antibacterianos/química , Quitosana/análogos & derivados , Vestuário , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Prata/química , Antibacterianos/farmacologia , Quitosana/farmacologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Humanos , Testes de Sensibilidade Microbiana , Polietilenoglicóis/farmacologia , Sapatos , Prata/farmacologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Têxteis/microbiologia
10.
Biomater Sci ; 3(3): 490-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26222292

RESUMO

In cancer therapy, surface engineering of drug delivery systems plays an essential role in their colloidal stability, biocompatibility and prolonged blood circulation. Inspired by the cell membrane consisting of phospholipids and glycolipids, a zwitterionic phosphorylcholine functionalized chitosan oligosaccharide (PC-CSO) was first synthesized to mimic the hydrophilic head groups of those amphipathic lipids. Then hydrophobic stearic acid (SA) similar to lipid fatty acids was grafted onto PC-CSO to form amphiphilic PC-CSO-SA copolymers. Cell membrane-mimetic micelles with a zwitterionic surface and a hydrophobic SA core were prepared by the self-assembly of PC-CSO-SA copolymers, showing excellent stability under extreme conditions including protein containing media, high salt content or a wide pH range. Doxorubicin (DOX) was successfully entrapped into polymeric micelles through the hydrophobic interaction between DOX and SA segments. After fast internalization by cancer cells, sustained drug release from micelles to the cytoplasm and nucleus was achieved. This result suggests that these biomimetic polymeric micelles may be promising drug delivery systems in cancer therapy.


Assuntos
Materiais Biocompatíveis/química , Membrana Celular/química , Membrana Celular/metabolismo , Quitosana/química , Doxorrubicina/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Oligossacarídeos/química , Polímeros/química , Ácidos Esteáricos/química , Antineoplásicos , Preparações de Ação Retardada , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas
11.
Macromol Biosci ; 14(9): 1280-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24866398

RESUMO

A novel amphiphilic copolymer, poly (ethylene glycol)-graft-polyethyleneimine/amide (PEG-g-PEI/amide), is synthesized by grafting PEG and1,2-cis-Cyclohexanedicarboxylic anhydride onto the PEI. PEGylated polymeric micelles can be assembled from the amphiphilic copolymers with well-defined nano-sizes, and anti-cancer drugs are successfully loaded into micelle core formed by the amide. The amides with neighboring carboxylic acid groups exhibit pH-dependent hydrolysis and can reversibly shield the cationic charge of amine groups on the PEI, giving the micelles a charge-conversion property from negative to positive in acidic tumor tissue environment. Meanwhile, the cleavage of amide bonds at acidic pH also results in the disassembly of the micelle and pH-responsive drug release. These micelles are promising drug delivery systems due to their smart properties: PEGylation, suitable size, charge-conversion, and simultaneous pH-sensitive drug release.


Assuntos
Antineoplásicos , Portadores de Fármacos , Micelas , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...